6,356 research outputs found

    On stress analysis of a crack-layer

    Get PDF
    This work considers the problem of elastic interaction of a macrocrack with an array of microcracks in the vicinity of the macrocrack tip. Using the double layer potential techniques, the solution to the problem within the framework of the plane problem of elastostatics has been obtained. Three particular problems of interest to fracture mechanics have been analyzed. It follows from analysis that microcrack array can either amplify or reduce the resulting stress field of the macrocrack-microcrack array system depending on the array's configuration. Using the obtained elastic solution the energy release rate associated with the translational motion of the macrocrack-microcrack array system has been evaluated

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations

    Full text link
    The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice structure very recently was declared as a new low-temperature (TC ~ 4.2K) superconductor. Here by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure

    Scaling of Crack Surfaces and Implications on Fracture Mechanics

    Full text link
    The scaling laws describing the roughness development of crack surfaces are incorporated into the Griffith criterion. We show that, in the case of a Family-Vicsek scaling, the energy balance leads to a purely elastic brittle behavior. On the contrary, it appears that an anomalous scaling reflects a R-curve behavior associated to a size effect of the critical resistance to crack growth in agreement with the fracture process of heterogeneous brittle materials exhibiting a microcracking damage.Comment: Revtex, 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Pattern formation and selection in quasi-static fracture

    Full text link
    Fracture in quasi-statically driven systems is studied by means of a discrete spring-block model. Developed from close comparison with desiccation experiments, it describes crack formation induced by friction on a substrate. The model produces cellular, hierarchical patterns of cracks, characterized by a mean fragment size linear in the layer thickness, in agreement with experiments. The selection of a stationary fragment size is explained by exploiting the correlations prior to cracking. A scaling behavior associated with the thickness and substrate coupling, derived and confirmed by simulations, suggests why patterns have similar morphology despite their disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include

    Theoretical backgrounds of durability analysis by normalized equivalent stress functionals

    Get PDF
    Generalized durability diagrams and their properties are considered for a material under a multiaxial loading given by an arbitrary function of time. Material strength and durability under such loading are described in terms of durability, safety factor and normalized equivalent stress. Relations between these functionals are analysed. We discuss some material properties including time and load stability, self-degradation (ageing), and monotonic damaging. Phenomenological strength conditions are presented in terms of the normalized equivalent stress. It is shown that the damage based durability analysis is reduced to a particular case of such strength conditions. Examples of the reduction are presented for some known durability models. The approach is applicable to the strength and durability description at creep and impact loading and their combination

    Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior

    Full text link
    This paper investigates the spinodal behavior of non-thermal damage phenomena. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. In the vicinity of the spinodal point the power-law scaling behavior is found. For the meanfield fiber-bundle model the spinodal exponents are found to have typical meanfield values.Comment: Version related: More careful explanation for the critical slowing-down. General: The topological properties of non-thermal damage are described by the formalism of statistical mechanics. This is the continuation of arXiv:0805.0346. Comments, especially negative, are very welcom

    Size Effect in Fracture: Roughening of Crack Surfaces and Asymptotic Analysis

    Full text link
    Recently the scaling laws describing the roughness development of fracture surfaces was proposed to be related to the macroscopic elastic energy released during crack propagation [Mor00]. On this basis, an energy-based asymptotic analysis allows to extend the link to the nominal strength of structures. We show that a Family-Vicsek scaling leads to the classical size effect of linear elastic fracture mechanics. On the contrary, in the case of an anomalous scaling, there is a smooth transition from the case of no size effect, for small structure sizes, to a power law size effect which appears weaker than the linear elastic fracture mechanics one, in the case of large sizes. This prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review
    corecore